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Biochemical characterization of metabolism provides molecular
insights for understanding biology in health and disease. Over the
past decades, metabolic perturbations have been implicated in
cancer, neurodegeneration, and diabetes, among others. Isotope
tracing is a technique that allows tracking of labeled atoms within
metabolites through biochemical reactions. This technique has
become an integral component of the contemporary metabolic
research. Isotope tracing measures substrate contribution to
downstream metabolites and indicates its utilization in cellular
metabolic networks. In addition, isotopic labeling data are
necessary for quantitative metabolic flux analysis. Here, we review
recent work utilizing metabolic tracing to study health and
disease, and highlight its application to interrogate subcellular,
intercellular, and in vivo metabolism. We further discuss the
current challenges and opportunities to expand the utility of
isotope tracing to new research areas.
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Introduction
Cellular metabolism is the sum of biochemical reactions
that support essential biological functions. Metabolic

h1,2,3,4

homeostasis maintains cellular health and normal orga-
nismal behavior, whereas metabolic dysfunctions lead to
a multitude of diseases [1-5]. The abundance of meta-
bolites, the functional units of metabolism, is often
measured in relative or absolute quantities to gauge
metabolic activities. However, deep metabolic insights,
including substrate utilization, pathway branching, and
metabolic flux rewiring are often missing without
tracking the elemental constituents of metabolites [6].
To provide such information, isotope tracing using °C,
H, N, and other elements has been applied to com-
plement simple quantitation of metabolite abundance
[7]. Isotope tracing reveals metabolic activities specific to
a substrate as it undergoes internalization and sub-
sequent biochemical transformations in the intracellular
space. Governed by atomic transitions based on reaction
mechanisms, unique labeling patterns are generated
when tracers are metabolized through different path-
ways [6,8,9]. Experimentally, isotope tracers can be ad-
ministered in a dynamic or steady-state fashion. While
dynamic tracing is able to reveal a snapshot of a local
metabolic state, steady-state tracing allows quantitative
investigation of a metabolic network at the systems level
[10,11]. In this regard, isotopic labeling data can be
utilized in conjunction with extracellular flux measure-
ments to estimate normalized biochemical reaction rates,
namely metabolic fluxes [12¢¢13]. The main applica-
tions of isotope tracers are summarized in Figure 1.

In this review, we explain isotope tracing and labeling
analysis in a variety of biological and clinical contexts,
including immunometabolism and metabolic repro-
gramming in cancer, neurodegeneration, and diabetes.
Moreover, we highlight the emerging applications of
isotope tracers to study subcellular, intercellular, and in
vrvo metabolism. Our goal is to illustrate the versatility
of isotope tracing in these research frontiers and discuss
future opportunities and challenges.

Cancer metabolism

Metabolic rewiring in cancer cells offers energetic and
anabolic advantages for sustaining uncontrolled pro-
liferation. Over the past decade, much of the knowledge
about factors that alter cancer metabolism was obtained

through the use of isotope tracing and flux analysis
[2,14-17].

Cancer cells respond to growth signals and chemical and
physical alterations in their microenvironment by
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Figure 1
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Applications of isotope tracers in metabolic research. (a) Isotope tracers serve as reliable internal standards for quantifying metabolite abundance.
Signal responses for tracers and metabolites of interest scale proportionally during sample preparation and acquisition. Additionally, different sample
matrices affect mass spectrometric responses for isotope tracers and analytes to the same extent. By dividing the signal of a targeted analyte to that of
its isotopic internal standard, true biological responses from mass spectrometry can be obtained. (b) Isotope tracing reveals the relative contribution of a
substrate into target metabolites. (c) Tracers indicate pathway activities along different metabolic routes. By quantifying the labeling percentage of
isotopomers characteristic of a unique pathway, relative fluxes can be compared. (d) Metabolic flux analysis integrates isotope tracing data that include
mass isotopomer distribution (MID) and extracellular flux data from kinetic concentration measurements [13]. This advanced analysis of isotope tracing
data yields comprehensive quantitation of fluxes for all metabolic pathways of interest.

reprograming their metabolism. In rapidly dividing cells,
glucose and glutamine are the main carbon substrates for
mitochondrial respiration and fatty acid synthesis. A re-
cent study showed, using uniformly labeled (U)—13C5-
glutamine tracing, that glutamine is also actively utilized
for synthesizing non-essential amino acids in growing
meningiomas [18]. However, this substrate utilization

pattern is changed when cellular growth stalls. For ex-
ample, human mammary epithelial cells rely on bran-
ched-chain amino acids (BCAAs) for mitochondrial
metabolism and lipogenesis under near-quiescent con-
dition. This is evidenced by increased "*C-enrichment
of the tricarboxylic acid (T'CA) cycle metabolites and
free fatey acids from "*C-labeled BCAAs [19]. Besides
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cellular growth, diet also profoundly rewires cancer
metabolism. Ketogenic diet causes elevation of
B-hydroxybutyrate in plasma and tumor interstitial fluid.
Due to restricted carbohydrate availability, AL1376
pancreatic ductal adenocarcinoma (PDAC) cells utilize
ketone bodies for fueling the TCA cycle as shown by
increased labeling from U-"’Cy4-p-hydroxybutyrate [20].

Additionally, cancer metabolism is responsive to oxygen
and proton availability, a mechanism that has been clu-
cidated by "*C-tracing. Under hypoxia, the reductive
pathway from glutamine is enhanced over the canonical
oxidative route from glucose. This is evidenced by re-
duced M+2 labeling from U-"?Cg-glucose with a con-
comitant increase in M+1 labeling from 1-">C-glutamine,
as these isotopomers are specific to these two distinct
metabolic pathways (Figure 2c¢) [12ee]. Similar to re-
ductive carboxylation, nonoxidative pentose phosphate
pathways (PPPs) are also modulated by hypoxia. When
1-C-glucose is metabolized along glycolysis, the la-
beling pattern of fructose-6-phosphate/fructose-1,6-bi-
sphosphate (F6/BP) indicates relative flux along
nonoxidative PPPs. Specifically, nonoxidative PPP flux
increases the M+1 isotopomer abundance of the frag-
ment at mass-to-charge ratio (#/z) 307, an ion that carries
the carbons at positions 4, 5, and 6 of the original mo-
lecule. Similarly, the fractional abundance of the M+1
fragment at m/z 364 is reduced due to isotopic dilution at
carbon positions 1, 2, 3, and 4 through nonoxidative
PPPs [21]. Besides oxygen, the level of protons also al-
ters glycolytic and PPP flux. For example, depletion of
monocarboxylate transporter 4 in acute myeloid leu-
kemia cells results in reacidification of the intracellular
space that further leads to attenuated '*C-fractional en-
richment of glycolytic metabolites [22].

Besides elucidating intrinsic and environmental cues
that influence metabolism in cancer cells, isotope tracing
revealed a nontraditional manifestation of cancer meta-
bolism; in addition to increasing metabolic activities
along certain pathways that provide growth advantage,
cancer cells also attenuate metabolic pathways with
growth-suppressing effects. Indeed, it was recently
found that cytotoxic deoxysphingolipids are synthesized
by serine palmitoyltransferase (SPT) due to enzyme
promiscuity. Instead of using serine as the canonical
substrate, SPT' combines alanine with palmitoyl-CoA to
produce toxic deoxysphingolipids in response to high
alanine/serine ratio. This metabolic connection was
elucidated by "“C-alanine tracing. Reduced expression
of the mitochondrial pyruvate carrier (MPC) has been
reported in colon cancer. This transcriptional change
accelerates alanine consumption by the TCA cycle as
the labeling of citrate from 2,3-"*C,-alanine is increased.
Decreased alanine availability further results in the de-
pletion of deoxysphingolipids and enhanced tumor
growth (Figure 2a) [23ee]. Therefore, evading the

metabolic programs that produce cytotoxic compounds is
another strategy that cancer cells use to metabolically
maintain their survival and growth.

As for emerging frontiers, there have been several major
breakthroughs in exploring metabolic coupling in cancer
over the past few years. Metabolic coupling exists be-
tween different pathways as well as between distinct cell
types. At the pathway level, the crosstalk between cy-
stine metabolism and PPP was lately uncovered by
1,2-C,-glucose tracing. Cancer cells with SLC7A11
overexpression exhibit increased M+1 and decreased M
+2 abundance for lactate, indicating enhanced flux
through the oxidative PPP. Mechanistically, PPP pro-
vides NADPH to reduce the insoluble cystine imported
by SLLC7A11 to cysteine, a function required to avoid
oxidative stress in SLLC7Al1-overexpressing cells [24e].
Similar metabolic crosstalk in the broader context of
redox homeostasis has also been reported [25,26]. As for
the intercellular level, the tumor microenvironment
(TME) has been of great interest since metabolic in-
teractions between cancer and surrounding cells exist in
physiological contexts and are capable of modulating
tumor progression [3]. Previously, alanine has been
shown to be secreted from stellate cells to replenish the
TCA cycle in PDAC cells. Indeed, a substantial amount
of TCA cycle intermediates are labeled by exogenous
U—13C3—alanine [27]. A recent study further revealed that
PDAC metabolism is also maintained by cancer-asso-
ciated fibroblasts (CAFs) that secrete branched-chain a-
ketoacids (BCKAs). Specifically, BCKAs contribute to
both protein synthesis and the TCA cycle as evidenced
by the presence of labeled BCAAs and TCA cycle in-
termediates from *C-BCKA tracing [28ee]. It thus ap-
pears that a diverse class of metabolites may be
exchanged between cancer and surrounding cells, which
warrants further investigation by isotope tracing analysis.

T'o characterize cancer metabolism in physiologically
relevant settings, more recent efforts have led to a sub-
stantial progress in the field of iz vive isotope tracing.
For instance, the first tracing experiment in patients
with clear cell renal cell carcinoma (ccRCC) demon-
strated that the Warburg effect is indeed conserved in
tumors infused with U-">Cg-glucose at the time of ne-
phrectomy. Specifically, increased glycolysis and sup-
pressed T'CA oxidation were observed in ccRCC tumors
[29¢]. Another iz viwo tumor study in zebrafish un-
covered a tumor-liver alanine cycle during which alanine
is excreted from tumors and regenerated to glucose via
gluconeogenesis in the liver. U-"*Cg-glucose tracing
showed that the amount of circulating M+3 glucose was
increased in the fish harboring BRAF mutation and p53
deficiency. Such isotopic labeling pattern suggests en-
hanced gluconeogenesis. In addition, compared with
other tricarbon substrates, M+3 alanine was markedly
increased in both the liver and serum, indicating that
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alanine acts as a circulating carrier that allows the re-
moval of excess nitrogen from tumor while supporting
hepatic gluconeogenesis to fulfill the high demand for
glucose in cancer cells [30]. We believe that future ad-
vancements in iz vivo tracing will be necessary to pro-
vide novel and comprehensive understanding of
metabolic dependencies in cancer.

Neurometabolism

The correlation between metabolic alterations and
neuropathies is well-established [4,31,32], however, the
study of neurometabolism that characterizes the meta-
bolic features of the central nervous system (CNS) is still
in its nascency. Traditionally, metabolic studies in the
CNS have focused on the biochemistry of neuro-
transmitters and brain energetics. Brain has a high en-
ergy demand, which is about 20% of individual’s
expenditure, although it represents only 2% of body
weight [33]. More recent work, using isotope tracing, has
provided novel insights into neuronal metabolism. The
metabolic flexibility of neurons has been revealed by
tracing with U-"*Cs-glucose and U-">Cs-glutamine. As a
therapeutic intervention to treat excitotoxic neurode-
generation, MPC was inhibited to promote the oxidation
of glutamate, the accumulation of which can lead to
neuronal toxicity. Upon MPC inhibition, the “C-en-
richment of T'CA cycle metabolites from U-"*Cy-glucose
was reduced. In order to maintain 'TCA activity, neurons
upregulate glutamate oxidation as evidenced by sig-
nificant increase in *C-enrichment from U-"C;s-gluta-
mine. This metabolic rewiring decreases the availability
of glutamate used for excitatory neurotransmission
without impairing bioenergetics, and hence provides a
therapeutic strategy that leverages this metabolic flex-
ibility to modulate neuronal excitotoxicity. [34]. In ad-
dition to glutamate metabolism, the importance of one-
carbon metabolism for neural development has been
recently uncovered through the use of 1,2-°C,-glycine.
Genetic depletion of glycine decarboxylase prevents
one-carbon transfer from 1,2-*C,-glycine to its methyl
group receptors, as the *C-incorporation into serine and
purines is reduced. Inhibition of the methionine cycle
also leads to dysfunctional neural tube closure. This
work highlights the important role of glycine and me-
thionine cycle in supplying one-carbon units during
embryogenesis [35].

In addition to neuronal cell metabolism, it is well ap-
preciated that glial cells also support metabolic home-
ostasis in the CNS. Lately, several metabolic pathways
have been studied in primary oligodendrocyte precursor
cells. Labeling by 1,2-">C,-glucose indicated highly ac-
tive oxidative PPP by measuring the M+1/M+2 ratio of
glutamate (Figure 2b). Pyruvate carboxylation activity
was also estimated by examining the '’C-enrichment
level of pyruvate from 1-"*C-lactate. M+1 pyruvate is

Isotope tracing in human health and disease Dong et al. 5

only generated through the pyruvate carboxylation re-
action due to the retention of *C atom that will other-
wise undergo decarboxylation via the pyruvate
dehydrogenase activity [9,36,37]. This further suggests
that pyruvate anaplerosis is also active in oligoden-
drocyte precursors in addition to astrocytes, where such
mechanism is important [38]. Moreover, oligoden-
drocytes also incorporate carbons from 1,2-"*C,-acetate
into the TCA cycle [39¢¢]. This metabolic activity has
also been observed in astrocytes [40], indicating that
several metabolic features may be shared by multiple
types of glial cells.

An important characteristic of neurometabolism is its
heterogenecous nature. Isotope tracing in freshly dis-
sected mouse brain slices revealed similar labeling pat-
terns by  U-""Cg-glucose  between cortex and
hippocampus. However, increased labeling percentage
of M+2 TCA metabolites was observed in the hippo-
campus compared to the cortex when tracing was per-
formed using 1,2-13C2-acetatc [41]. At the cellular level,
neuronal metabolism is different from that of astrocytes.
For example, cerebellar astrocytes exhibit a higher ci-
trate excretion rate compared to neurons [42]. Further-
more, the labeling of glutamate from U-"°Cj-lacate is
higher in neurons than that in astrocytes [43]. The me-
tabolic heterogeneity among brain regions and cell types
requires metabolic crosstalk and cooperation (division of
labor) within the CNS to maintain metabolic home-
ostasis. Consistent with this notion, a recent study re-
ported a mechanism by which astrocytic ApoE-mediated
microRNA delivery can inhibit neuronal cholesterol
biosynthesis. Specifically, neurons cultured with astro-
cyte-conditioned medium exhibited reduced levels of
C-labeled cholesterol and its biosynthetic precursors
from U—13C(,-glucose [44]. Another study showed that
ApoE mediates shuttling of lipids from neurons to as-
trocytes for lipid detoxification [45]. These results
highlight the dynamic cooperation of glial cells and
neurons for concerted maintenance of brain metabolic
homeostasis.

Besides elucidating the communication between dif-
ferent brain cell types, isotope tracing also revealed
metabolic connections between mitochondrial dysfunc-
tion and neuropathy. Through dynamic labeling by
U-"Cg-glucose in mice with Polg mutation, a model for
mitochondria-associated neuropathy, enhanced glyco-
lysis and gluconeogenesis were observed as determined
by the increased levels of *C-labeled glycolytic inter-
mediates and glucose isotopomers, which indicate glu-
coneogenic scrambling. Moreover, '*C-labeled lactate
and alanine were significantly increased in plasma but
not in other tissues, suggesting activated Cahill cycling
under mitochondrial dysfunction. In addition, labeling
by N-ammonium chloride also showed decreased iso-
tope enrichment in urea, reflecting an impaired urea

www.sciencedirect.com
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cycle. These results suggest strong correlation between
mitochondrial defects and neuropathy manifested by
both carbon and nitrogen metabolic abnormalities [46].

Immunometabolism

As the effectiveness of immunotherapy has been sig-
nificantly improving over the last decade, the effort to
understand the metabolism of immune cells has gained
increasing popularity. Through U-"Cg-glucose and
U-"Cs-glutamine tracing, divergent metabolic fates
have been uncovered in tumor and effector T cells
under glutamine blockade. As expected, the contribu-
tion from U-"?Cjs-glutamine to central carbon metabo-
lites was reduced in both cell types treated by the
glutamine antagonist JHU-083. The 'C-enrichment
from U-"?Cg-glucose to TCA intermediates was also at-
tenuated by glutamine restriction in tumor cells.
However, effector T cells activated anaplerosis from
U-Cg-glucose  to  replenish the TCA cycle.
Furthermore, increased 13C—labeling from 1,2-13C2—
acetate was also observed in T cells, suggesting greater
metabolic flexibility of T cells to maintain TCA cycle
activity using other carbon sources. This metabolic di-
vergence provides an opportunity to improve im-
munotherapy as glutamine blockade not only leads to
metabolic stress for tumor cells, but also promotes anti-
tumor functions by T cells [47¢].

Another isotope labeling work revealed distinct meta-
bolic phenotypes between iz vivo CD8+ T cells com-
pared with those activated iz vitro. Although T cells in
vitro show high glucose uptake and lactate production
rates, effector T cells differentiated iz vivo exhibit
higher flux from U-"C¢-glucose into multiple anabolic
pathways, including &e novo serine and nucleotide bio-
synthesis. In addition, inhibition of serine biosynthesis
as reflected by reduced levels of *C-serine isotopomers
resulted in suppressed T' cell proliferation 7z vivo [48].
Besides glucose and glutamine tracing, labeling using
13Q;- and "®N-alanine reveals that extracellular alanine is
required for T cell activation. Quantitation of "*C-la-
beled and "*N-labeled isotopomers shows that alanine is
mostly used for protein synthesis rather than being cat-
abolized into pyruvate and TCA cycle intermediates
[49]. These findings collectively corroborate the im-
portant role of cellular metabolism in supporting proper
immuno-oncological functions.

Metabolism in diabetes mellitus

"T'raditionally, insulin signaling has been the major focus
of diabetes research. Lately, direct characterization of
metabolic pathways in pancreatic f cells and adipocytes,
one of the major types of cells responsive to insulin ac-
tions, has also begun to draw attention. Specifically, in-
sulin resistance rewires adipocytic TCA cycle for
enhanced incorporation of U-"?C¢-glucose to M+2 and M

+5 citrate. This suggests increased TCA metabolism at
both the first and third rounds of the cycle [50]. More-
over, kinetic studies using U-"*Cg-glucose revealed that
insulin signaling acts as a driving force to prime anabolic
shift toward pyruvate carboxylation and oxidative PPP in
adipocytes [51¢].

In addition to insulin, temperature-induced metabolic
rewiring is also reported in adipocytes. /7 vivo metabolic
tracing by U-"?Cg-glucose in brown adipose tissue in-
dicates that glucose flux into glycolysis, PPP, and the
TCA cycle is increased under acute cold treatment,
since the abundance of total *C-labeled metabolites was
increased [52]. Iz vivo tracing using U-"*Cs4-glucose in
mouse pancreatic islets revealed that pancreatic B cells
from 1-year-old mice exhibit increased molar percentage
enrichment of "*C for central carbon metabolites and
coupling factors (cofactors and metabolites required for
pancreatic insulin secretion) [53] compared with their
juvenile counterparts. This result suggests that aging
also triggers metabolic reprogramming in pancreatic 3
cells [54]. We believe that as the interest in studying
diabetic molecular metabolism continues to grow, iso-
tope tracing using substrates beyond glucose will shed
light on important pathogenic pathways to better un-
derstand this metabolic disease.

Subcellular metabolism

In addition to investigating metabolic rewiring in dis-
ease, the use of isotope tracing has also made substantial
contribution to our understanding of compartmentalized
metabolism. There are multiple approaches to achieve
subcellular ~ resolution  for  metabolic  studies.
T'raditionally, metabolites enriched in certain compart-
ments are used as a proxy to characterize subcellular
metabolism. Well-known examples are TCA cycle and
glycolytic intermediates for mitochondria and cytoplasm,
respectively. However, studies have shown that certain
metabolites and metabolic pathways may not exist ex-
clusively in one subcellular compartment [12e® 55¢].
Nevertheless, this approach is still widely used in con-
junction with isotope tracing to gain subcellular under-
standing. For instance, examination of the labeling
patterns of uridine diphosphate N-acetylglucosamine
from U-"Cg-glucose suggests differential contribution
from cytosolic and mitochondrial pathways to hex-
osamine synthesis in macrophages polarized by classic
and alternative means [56].

Improved subcellular resolution for metabolism has
been made by coupling compartment-specific reporters
with specially designed isotope tracers. T'racing of deu-
terium in cells with a compartment-specific isocitrate
dehydrogenase (IDH)-mutant reporter system revealed
that the primary subcellular location for serine-to-glycine
conversion is within mitochondria in A549 cells [57].
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Emerging frontiers in isotope tracing. (a) /n vivo isotope labeling provides physiological insights for cellular and organismal metabolism. However, it
faces a major challenge to reach isotopic steady states, given the amount of tracers available due to cost considerations. (b) Intercellular metabolic
coupling has been resolved by tracing studies. PDAC tumor cells receive BCKAs from CAFs to fuel TCA cycling and protein synthesis [28e¢¢]. (c)
Isotope tracing plays an important role in deciphering subcellular metabolism. Pulse-chase experiment by labeled amino acids reveals that V-ATPase
and mTOR modulate the lysosomal efflux of non-essential and essential amino acids, respectively [56].

Lately, different technologies, including Raman spec-
troscopy, secondary ion mass spectrometry, as well as
fluorescent labeling of metabolites and computational
modeling, have led to significant progress in dissecting
subcellular metabolism. For example, the use of Raman
microspectroscopy identified an endoplasmic reticulum

(ER)-specific phospholipid dysregulation in infiltrating
gliomas harboring IDH mutations [58]. In addition,
subcellular localization of glycerophospholipids and their
sulfatides was pinpointed in mouse hippocampus by
employing secondary ion and Orbitrap mass spectro-
metry [59]. Furthermore, a recent study that integrates

www.sciencedirect.com
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fluorescence sensing and *C-labeling results via math-
ematical analysis suggested that enhanced oxidative PPP
in the cytoplasm and glucose anaplerosis may support
redox balance in response to mitochondria-specific oxi-
dative stress [60].

In contrast to the methods above, the direct assessment
of subcellular metabolism can be achieved by rapid
immunoprecipitation of organelles followed by down-
stream metabolite profiling. This technique has been
developed and optimized for metabolite analysis in mi-
tochondria  (MitoIP), lysosomes (LysoIP), and
peroxisomes (PeroxolIP) [61-64]. MitoIP enriches for
metabolites that are consistent with the metabolic
function of the organelle [62]. Although it is still feasible
to probe some aspects of the mitochondrial metabolism
at the whole-cell level by profiling TCA cycle inter-
mediates, metabolic investigation of lysosomes requires
subcellular resolution, mainly because of their small size
compared to that of the cell. Consistent with this, acute
disruption of the lysosomal proton gradient using se-
lective V-A'TPase inhibitors, including Concanamycin A
or Bafilomycin A1, has minimal effects on the whole-cell
metabolome, while it dramatically increases the levels of
several metabolites in the lysosome as determined using
LysolIP followed by metabolite profiling. Using a com-
bination of compartment-specific immunoprecipitation
and isotope tracing, this accumulation was shown to be a
result of slower efflux of affected metabolites across the
lysosomal membrane. Dynamic tracing using LysolP
also identified differential mechanisms governing lyso-
somal amino acid egress. While proton gradient disrup-
tion led to reduced efflux of non-essential amino acids,
the export of several essential amino acids was modu-
lated by mTOR activity [63]. We believe that the efforts
to characterize subcellular metabolism using isotope
tracing, immunoprecipitation, and hybrid mass spectro-
metry techniques will improve our understanding of
compartmentalized biochemistry with precision and
mechanistic insights.

Concluding remarks

With the advancement of metabolic research in different
areas of biology, isotope tracing has become increasingly
popular. In addition to its basic application for internal
standardization of metabolite quantitation, the use of
isotopically labeled metabolites offers opportunities to
distinguish molecules derived from a specific substrate
and processed along a distinct metabolic pathway.
Additionally, labeling data contain rich information that
can be fully leveraged to estimate metabolic flux, a
technique that requires computational work such as
metabolic flux analysis. Although additional modeling
effort is needed to fully extract what isotope tracers have
to offer, simple metrics such as percentage of isotope
enrichment and isotopomer ratios already offer deep

metabolic insights needed for mechanistic studies. It is
worth noting that due to error propagation, isotopomer
ratios should be computed and interpreted with caution
as they are sensitive to experimental errors [65].

Experimental guidelines for carrying out tracing studies
have been discussed in previous publications [6,8,10].
For applications in mammalian cell systems, tracers are
usually introduced via cell culture media that contains
defined chemical components. Tracer-containing media
should be prepared fresh and administered after com-
plete removal of spent media. In addition, metabolite
harvesting needs swift and precise laboratory techniques
to ensure rapid quenching and metabolite extraction.
For steady-state tracing, environmental perturbations
such as temperature and humidity changes should be
avoided. For metabolic flux analysis, isotopic steady
states should be experimentally validated before com-
putational analysis. Last, for /z vivo tracing, the choice of
diet as well as the timing of feeding, fasting, and har-
vesting are also important experimental considerations.

By summarizing recent literature that has employed
isotope tracing in cancer, neuro-, immuno-, and diabetic
metabolism, several themes have emerged. First, using
isotope tracing iz vivo to obtain physiologically relevant
insights is the overarching objective across all these
fields. Despite several major breakthroughs in the field
of in vivo tracing, the cost of tracers at large quantity and
the difficulty to reach isotopic steady state for pathways
whose flux is low or characterized by slow turnover rates,
such as lipid and nucleotide biosynthesis, still remain
challenging (Figure 3a). Additionally, recent efforts have
also aimed to address discrepancies between 7z vivo and
in vitro tracing studies [66]. One example is high gluta-
mine contribution to the T'CA cycle 7z vitro in contrast to
its minimal utilization in vrwe. This was uncovered by
both *C-isotope infusion and metabolite quantitation in
the TME in mice [67,68]. In addition, isotope tracing in
physiologically relevant media has provided more accu-
rate metabolic insights [69]. Furthermore, 7z vivo tracing
studies have also unveiled tissue-dependent metabolic
phenotypes. Although glucose tracing in ccRCC patients
showed that the Warburg effect is conserved in this
specific tumor type [29¢], reports in patients with other
cancer types suggest that the TCA cycle activity is
higher in tumor cells compared with surrounding benign
lesions [70-72]. Future tracing work will shed light on
the heterogencous nature of cancer metabolism with
respect to tumor type and tissue of origin.

In addition to iz viwo metabolic studies, intercellular
metabolic communication is another emerging theme.
Arguably, the best example of this endeavor is the
characterization of the TME. Isotope tracing is essential
for studying metabolite-based cellular communication
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between different cell types as each cell type can be
considered a distinct metabolic compartment (Figure
3b). The challenge for such studies is that cell-type-
specific contributions to metabolite pools remain diffi-
cult to resolve in bulk tissue analysis. Recently, com-
partmentalized metabolism has also been characterized
in the placenta and embryo, thus paving the road for
investigating inter-tissue metabolic coupling [73]. An-
other emerging theme that we observed is the study of
subcellular metabolism and interorganellar metabolic
crosstalk. While mitochondria had been historically the
major focus of subcellular metabolic research, recently,
specially designed tracers and rapid immunoprecipita-
tion of organelles have allowed metabolic characteriza-
tion of other compartments such as the ER, Golgi,
peroxisomes, and lysosomes (Figure 3¢). We believe that
these technical developments will pave the way to pro-
filing other specialized organelles and subcellular com-
partments whose metabolic roles remain elusive, yet
fascinating to uncover.
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